Space Trajectory Optimization and L-Optimal Control Problems
نویسنده
چکیده
منابع مشابه
Approximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms
In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced. In this approach, first a discretized form of the time-control space is considered and then, a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...
متن کاملTrajectory Optimization of Cable Parallel Manipulators in Point-to-Point Motion
Planning robot trajectory is a complex task that plays a significant role in design and application of robots in task space. The problem is formulated as a trajectory optimization problem which is fundamentally a constrained nonlinear optimization problem. Open-loop optimal control method is proposed as an approach for trajectory optimization of cable parallel manipulator for a given two-end-po...
متن کاملDiscrete Mechanics and Optimal Control for Space Trajectory Design
Space trajectory design is often achieved through a combination of dynamical systems theory and optimal control. The union of trajectory design techniques utilizing invariant manifolds of the planar circular restricted three-body problem and the optimal control scheme Discrete Mechanics and Optimal Control (DMOC) facilitates the design of low-energy trajectories in the N -body problem. In parti...
متن کاملPareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملA Second-Order Gradient Solver using a Homotopy Method for Space Trajectory Problems
Recent developments in low-thrust trajectory optimization methods have shown that second-order gradient techniques can be e cient. Robust second-order methods allow one to solve complex dynamical problems, accounting for perturbations, and path constraints, with high delity. Convergence of the method, however, requires a very good initial guess, or a lot of user experience. Based on a quadratic...
متن کامل